\(\int \frac {(c+d \sin (e+f x))^{3/2}}{3+3 \sin (e+f x)} \, dx\) [505]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 27, antiderivative size = 185 \[ \int \frac {(c+d \sin (e+f x))^{3/2}}{3+3 \sin (e+f x)} \, dx=-\frac {(c-d) \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{f (3+3 \sin (e+f x))}-\frac {(c-3 d) E\left (\frac {1}{2} \left (e-\frac {\pi }{2}+f x\right )|\frac {2 d}{c+d}\right ) \sqrt {c+d \sin (e+f x)}}{3 f \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}+\frac {\left (c^2-d^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} \left (e-\frac {\pi }{2}+f x\right ),\frac {2 d}{c+d}\right ) \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}{3 f \sqrt {c+d \sin (e+f x)}} \]

[Out]

-(c-d)*cos(f*x+e)*(c+d*sin(f*x+e))^(1/2)/f/(a+a*sin(f*x+e))+(c-3*d)*(sin(1/2*e+1/4*Pi+1/2*f*x)^2)^(1/2)/sin(1/
2*e+1/4*Pi+1/2*f*x)*EllipticE(cos(1/2*e+1/4*Pi+1/2*f*x),2^(1/2)*(d/(c+d))^(1/2))*(c+d*sin(f*x+e))^(1/2)/a/f/((
c+d*sin(f*x+e))/(c+d))^(1/2)-(c^2-d^2)*(sin(1/2*e+1/4*Pi+1/2*f*x)^2)^(1/2)/sin(1/2*e+1/4*Pi+1/2*f*x)*EllipticF
(cos(1/2*e+1/4*Pi+1/2*f*x),2^(1/2)*(d/(c+d))^(1/2))*((c+d*sin(f*x+e))/(c+d))^(1/2)/a/f/(c+d*sin(f*x+e))^(1/2)

Rubi [A] (verified)

Time = 0.19 (sec) , antiderivative size = 186, normalized size of antiderivative = 1.01, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {2846, 2831, 2742, 2740, 2734, 2732} \[ \int \frac {(c+d \sin (e+f x))^{3/2}}{3+3 \sin (e+f x)} \, dx=\frac {\left (c^2-d^2\right ) \sqrt {\frac {c+d \sin (e+f x)}{c+d}} \operatorname {EllipticF}\left (\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right ),\frac {2 d}{c+d}\right )}{a f \sqrt {c+d \sin (e+f x)}}-\frac {(c-d) \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{f (a \sin (e+f x)+a)}-\frac {(c-3 d) \sqrt {c+d \sin (e+f x)} E\left (\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right )|\frac {2 d}{c+d}\right )}{a f \sqrt {\frac {c+d \sin (e+f x)}{c+d}}} \]

[In]

Int[(c + d*Sin[e + f*x])^(3/2)/(a + a*Sin[e + f*x]),x]

[Out]

-(((c - d)*Cos[e + f*x]*Sqrt[c + d*Sin[e + f*x]])/(f*(a + a*Sin[e + f*x]))) - ((c - 3*d)*EllipticE[(e - Pi/2 +
 f*x)/2, (2*d)/(c + d)]*Sqrt[c + d*Sin[e + f*x]])/(a*f*Sqrt[(c + d*Sin[e + f*x])/(c + d)]) + ((c^2 - d^2)*Elli
pticF[(e - Pi/2 + f*x)/2, (2*d)/(c + d)]*Sqrt[(c + d*Sin[e + f*x])/(c + d)])/(a*f*Sqrt[c + d*Sin[e + f*x]])

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2831

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(b*c
 - a*d)/b, Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[d/b, Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 2846

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-(
b*c - a*d))*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n - 1)/(a*f*(a + b*Sin[e + f*x]))), x] - Dist[d/(a*b), Int[(c
+ d*Sin[e + f*x])^(n - 2)*Simp[b*d*(n - 1) - a*c*n + (b*c*(n - 1) - a*d*n)*Sin[e + f*x], x], x], x] /; FreeQ[{
a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[n, 1] && (IntegerQ
[2*n] || EqQ[c, 0])

Rubi steps \begin{align*} \text {integral}& = -\frac {(c-d) \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{f (a+a \sin (e+f x))}-\frac {d \int \frac {-\frac {1}{2} a (3 c-d)+\frac {1}{2} a (c-3 d) \sin (e+f x)}{\sqrt {c+d \sin (e+f x)}} \, dx}{a^2} \\ & = -\frac {(c-d) \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{f (a+a \sin (e+f x))}-\frac {(c-3 d) \int \sqrt {c+d \sin (e+f x)} \, dx}{2 a}+\frac {\left (c^2-d^2\right ) \int \frac {1}{\sqrt {c+d \sin (e+f x)}} \, dx}{2 a} \\ & = -\frac {(c-d) \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{f (a+a \sin (e+f x))}-\frac {\left ((c-3 d) \sqrt {c+d \sin (e+f x)}\right ) \int \sqrt {\frac {c}{c+d}+\frac {d \sin (e+f x)}{c+d}} \, dx}{2 a \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}+\frac {\left (\left (c^2-d^2\right ) \sqrt {\frac {c+d \sin (e+f x)}{c+d}}\right ) \int \frac {1}{\sqrt {\frac {c}{c+d}+\frac {d \sin (e+f x)}{c+d}}} \, dx}{2 a \sqrt {c+d \sin (e+f x)}} \\ & = -\frac {(c-d) \cos (e+f x) \sqrt {c+d \sin (e+f x)}}{f (a+a \sin (e+f x))}-\frac {(c-3 d) E\left (\frac {1}{2} \left (e-\frac {\pi }{2}+f x\right )|\frac {2 d}{c+d}\right ) \sqrt {c+d \sin (e+f x)}}{a f \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}+\frac {\left (c^2-d^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} \left (e-\frac {\pi }{2}+f x\right ),\frac {2 d}{c+d}\right ) \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}{a f \sqrt {c+d \sin (e+f x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.21 (sec) , antiderivative size = 223, normalized size of antiderivative = 1.21 \[ \int \frac {(c+d \sin (e+f x))^{3/2}}{3+3 \sin (e+f x)} \, dx=\frac {\left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) \left (2 (c-d) \sin \left (\frac {1}{2} (e+f x)\right ) (c+d \sin (e+f x))-\left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) \left (-\left (\left (c^2-2 c d-3 d^2\right ) E\left (\frac {1}{4} (-2 e+\pi -2 f x)|\frac {2 d}{c+d}\right ) \sqrt {\frac {c+d \sin (e+f x)}{c+d}}\right )+(c-d) \left (c+d \sin (e+f x)+(c+d) \operatorname {EllipticF}\left (\frac {1}{4} (-2 e+\pi -2 f x),\frac {2 d}{c+d}\right ) \sqrt {\frac {c+d \sin (e+f x)}{c+d}}\right )\right )\right )}{3 f (1+\sin (e+f x)) \sqrt {c+d \sin (e+f x)}} \]

[In]

Integrate[(c + d*Sin[e + f*x])^(3/2)/(3 + 3*Sin[e + f*x]),x]

[Out]

((Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*(2*(c - d)*Sin[(e + f*x)/2]*(c + d*Sin[e + f*x]) - (Cos[(e + f*x)/2] +
Sin[(e + f*x)/2])*(-((c^2 - 2*c*d - 3*d^2)*EllipticE[(-2*e + Pi - 2*f*x)/4, (2*d)/(c + d)]*Sqrt[(c + d*Sin[e +
 f*x])/(c + d)]) + (c - d)*(c + d*Sin[e + f*x] + (c + d)*EllipticF[(-2*e + Pi - 2*f*x)/4, (2*d)/(c + d)]*Sqrt[
(c + d*Sin[e + f*x])/(c + d)]))))/(3*f*(1 + Sin[e + f*x])*Sqrt[c + d*Sin[e + f*x]])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(924\) vs. \(2(242)=484\).

Time = 1.78 (sec) , antiderivative size = 925, normalized size of antiderivative = 5.00

method result size
default \(\frac {\sqrt {\left (\cos ^{2}\left (f x +e \right )\right ) d \sin \left (f x +e \right )+c \left (\cos ^{2}\left (f x +e \right )\right )}\, \left (2 \sqrt {\frac {d \sin \left (f x +e \right )}{c -d}+\frac {c}{c -d}}\, \sqrt {-\frac {d \sin \left (f x +e \right )}{c +d}+\frac {d}{c +d}}\, \sqrt {-\frac {d \sin \left (f x +e \right )}{c -d}-\frac {d}{c -d}}\, F\left (\sqrt {\frac {d \sin \left (f x +e \right )}{c -d}+\frac {c}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) c^{2} d -2 \sqrt {\frac {d \sin \left (f x +e \right )}{c -d}+\frac {c}{c -d}}\, \sqrt {-\frac {d \sin \left (f x +e \right )}{c +d}+\frac {d}{c +d}}\, \sqrt {-\frac {d \sin \left (f x +e \right )}{c -d}-\frac {d}{c -d}}\, F\left (\sqrt {\frac {d \sin \left (f x +e \right )}{c -d}+\frac {c}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) d^{3}+\sqrt {\frac {d \sin \left (f x +e \right )}{c -d}+\frac {c}{c -d}}\, \sqrt {-\frac {d \sin \left (f x +e \right )}{c +d}+\frac {d}{c +d}}\, \sqrt {-\frac {d \sin \left (f x +e \right )}{c -d}-\frac {d}{c -d}}\, E\left (\sqrt {\frac {d \sin \left (f x +e \right )}{c -d}+\frac {c}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) c^{3}-3 \sqrt {\frac {d \sin \left (f x +e \right )}{c -d}+\frac {c}{c -d}}\, \sqrt {-\frac {d \sin \left (f x +e \right )}{c +d}+\frac {d}{c +d}}\, \sqrt {-\frac {d \sin \left (f x +e \right )}{c -d}-\frac {d}{c -d}}\, E\left (\sqrt {\frac {d \sin \left (f x +e \right )}{c -d}+\frac {c}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) c^{2} d -\sqrt {\frac {d \sin \left (f x +e \right )}{c -d}+\frac {c}{c -d}}\, \sqrt {-\frac {d \sin \left (f x +e \right )}{c +d}+\frac {d}{c +d}}\, \sqrt {-\frac {d \sin \left (f x +e \right )}{c -d}-\frac {d}{c -d}}\, E\left (\sqrt {\frac {d \sin \left (f x +e \right )}{c -d}+\frac {c}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) c \,d^{2}+3 \sqrt {\frac {d \sin \left (f x +e \right )}{c -d}+\frac {c}{c -d}}\, \sqrt {-\frac {d \sin \left (f x +e \right )}{c +d}+\frac {d}{c +d}}\, \sqrt {-\frac {d \sin \left (f x +e \right )}{c -d}-\frac {d}{c -d}}\, E\left (\sqrt {\frac {d \sin \left (f x +e \right )}{c -d}+\frac {c}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) d^{3}-c \left (\cos ^{2}\left (f x +e \right )\right ) d^{2}+\left (\cos ^{2}\left (f x +e \right )\right ) d^{3}+c^{2} d \sin \left (f x +e \right )-2 \sin \left (f x +e \right ) c \,d^{2}+d^{3} \sin \left (f x +e \right )-c^{2} d +2 c \,d^{2}-d^{3}\right )}{d \sqrt {-\left (c +d \sin \left (f x +e \right )\right ) \left (\sin \left (f x +e \right )-1\right ) \left (\sin \left (f x +e \right )+1\right )}\, a \cos \left (f x +e \right ) \sqrt {c +d \sin \left (f x +e \right )}\, f}\) \(925\)

[In]

int((c+d*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e)),x,method=_RETURNVERBOSE)

[Out]

(cos(f*x+e)^2*d*sin(f*x+e)+c*cos(f*x+e)^2)^(1/2)*(2*(d/(c-d)*sin(f*x+e)+1/(c-d)*c)^(1/2)*(-d/(c+d)*sin(f*x+e)+
d/(c+d))^(1/2)*(-d/(c-d)*sin(f*x+e)-d/(c-d))^(1/2)*EllipticF((d/(c-d)*sin(f*x+e)+1/(c-d)*c)^(1/2),((c-d)/(c+d)
)^(1/2))*c^2*d-2*(d/(c-d)*sin(f*x+e)+1/(c-d)*c)^(1/2)*(-d/(c+d)*sin(f*x+e)+d/(c+d))^(1/2)*(-d/(c-d)*sin(f*x+e)
-d/(c-d))^(1/2)*EllipticF((d/(c-d)*sin(f*x+e)+1/(c-d)*c)^(1/2),((c-d)/(c+d))^(1/2))*d^3+(d/(c-d)*sin(f*x+e)+1/
(c-d)*c)^(1/2)*(-d/(c+d)*sin(f*x+e)+d/(c+d))^(1/2)*(-d/(c-d)*sin(f*x+e)-d/(c-d))^(1/2)*EllipticE((d/(c-d)*sin(
f*x+e)+1/(c-d)*c)^(1/2),((c-d)/(c+d))^(1/2))*c^3-3*(d/(c-d)*sin(f*x+e)+1/(c-d)*c)^(1/2)*(-d/(c+d)*sin(f*x+e)+d
/(c+d))^(1/2)*(-d/(c-d)*sin(f*x+e)-d/(c-d))^(1/2)*EllipticE((d/(c-d)*sin(f*x+e)+1/(c-d)*c)^(1/2),((c-d)/(c+d))
^(1/2))*c^2*d-(d/(c-d)*sin(f*x+e)+1/(c-d)*c)^(1/2)*(-d/(c+d)*sin(f*x+e)+d/(c+d))^(1/2)*(-d/(c-d)*sin(f*x+e)-d/
(c-d))^(1/2)*EllipticE((d/(c-d)*sin(f*x+e)+1/(c-d)*c)^(1/2),((c-d)/(c+d))^(1/2))*c*d^2+3*(d/(c-d)*sin(f*x+e)+1
/(c-d)*c)^(1/2)*(-d/(c+d)*sin(f*x+e)+d/(c+d))^(1/2)*(-d/(c-d)*sin(f*x+e)-d/(c-d))^(1/2)*EllipticE((d/(c-d)*sin
(f*x+e)+1/(c-d)*c)^(1/2),((c-d)/(c+d))^(1/2))*d^3-c*cos(f*x+e)^2*d^2+cos(f*x+e)^2*d^3+c^2*d*sin(f*x+e)-2*sin(f
*x+e)*c*d^2+d^3*sin(f*x+e)-c^2*d+2*c*d^2-d^3)/d/(-(c+d*sin(f*x+e))*(sin(f*x+e)-1)*(sin(f*x+e)+1))^(1/2)/a/cos(
f*x+e)/(c+d*sin(f*x+e))^(1/2)/f

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 674, normalized size of antiderivative = 3.64 \[ \int \frac {(c+d \sin (e+f x))^{3/2}}{3+3 \sin (e+f x)} \, dx=\frac {{\left (\sqrt {2} {\left (2 \, c^{2} + 3 \, c d - 3 \, d^{2}\right )} \cos \left (f x + e\right ) + \sqrt {2} {\left (2 \, c^{2} + 3 \, c d - 3 \, d^{2}\right )} \sin \left (f x + e\right ) + \sqrt {2} {\left (2 \, c^{2} + 3 \, c d - 3 \, d^{2}\right )}\right )} \sqrt {i \, d} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, c^{2} - 3 \, d^{2}\right )}}{3 \, d^{2}}, -\frac {8 \, {\left (8 i \, c^{3} - 9 i \, c d^{2}\right )}}{27 \, d^{3}}, \frac {3 \, d \cos \left (f x + e\right ) - 3 i \, d \sin \left (f x + e\right ) - 2 i \, c}{3 \, d}\right ) + {\left (\sqrt {2} {\left (2 \, c^{2} + 3 \, c d - 3 \, d^{2}\right )} \cos \left (f x + e\right ) + \sqrt {2} {\left (2 \, c^{2} + 3 \, c d - 3 \, d^{2}\right )} \sin \left (f x + e\right ) + \sqrt {2} {\left (2 \, c^{2} + 3 \, c d - 3 \, d^{2}\right )}\right )} \sqrt {-i \, d} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, c^{2} - 3 \, d^{2}\right )}}{3 \, d^{2}}, -\frac {8 \, {\left (-8 i \, c^{3} + 9 i \, c d^{2}\right )}}{27 \, d^{3}}, \frac {3 \, d \cos \left (f x + e\right ) + 3 i \, d \sin \left (f x + e\right ) + 2 i \, c}{3 \, d}\right ) - 3 \, {\left (\sqrt {2} {\left (-i \, c d + 3 i \, d^{2}\right )} \cos \left (f x + e\right ) + \sqrt {2} {\left (-i \, c d + 3 i \, d^{2}\right )} \sin \left (f x + e\right ) + \sqrt {2} {\left (-i \, c d + 3 i \, d^{2}\right )}\right )} \sqrt {i \, d} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (4 \, c^{2} - 3 \, d^{2}\right )}}{3 \, d^{2}}, -\frac {8 \, {\left (8 i \, c^{3} - 9 i \, c d^{2}\right )}}{27 \, d^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, c^{2} - 3 \, d^{2}\right )}}{3 \, d^{2}}, -\frac {8 \, {\left (8 i \, c^{3} - 9 i \, c d^{2}\right )}}{27 \, d^{3}}, \frac {3 \, d \cos \left (f x + e\right ) - 3 i \, d \sin \left (f x + e\right ) - 2 i \, c}{3 \, d}\right )\right ) - 3 \, {\left (\sqrt {2} {\left (i \, c d - 3 i \, d^{2}\right )} \cos \left (f x + e\right ) + \sqrt {2} {\left (i \, c d - 3 i \, d^{2}\right )} \sin \left (f x + e\right ) + \sqrt {2} {\left (i \, c d - 3 i \, d^{2}\right )}\right )} \sqrt {-i \, d} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (4 \, c^{2} - 3 \, d^{2}\right )}}{3 \, d^{2}}, -\frac {8 \, {\left (-8 i \, c^{3} + 9 i \, c d^{2}\right )}}{27 \, d^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, c^{2} - 3 \, d^{2}\right )}}{3 \, d^{2}}, -\frac {8 \, {\left (-8 i \, c^{3} + 9 i \, c d^{2}\right )}}{27 \, d^{3}}, \frac {3 \, d \cos \left (f x + e\right ) + 3 i \, d \sin \left (f x + e\right ) + 2 i \, c}{3 \, d}\right )\right ) - 6 \, {\left (c d - d^{2} + {\left (c d - d^{2}\right )} \cos \left (f x + e\right ) - {\left (c d - d^{2}\right )} \sin \left (f x + e\right )\right )} \sqrt {d \sin \left (f x + e\right ) + c}}{6 \, {\left (a d f \cos \left (f x + e\right ) + a d f \sin \left (f x + e\right ) + a d f\right )}} \]

[In]

integrate((c+d*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e)),x, algorithm="fricas")

[Out]

1/6*((sqrt(2)*(2*c^2 + 3*c*d - 3*d^2)*cos(f*x + e) + sqrt(2)*(2*c^2 + 3*c*d - 3*d^2)*sin(f*x + e) + sqrt(2)*(2
*c^2 + 3*c*d - 3*d^2))*sqrt(I*d)*weierstrassPInverse(-4/3*(4*c^2 - 3*d^2)/d^2, -8/27*(8*I*c^3 - 9*I*c*d^2)/d^3
, 1/3*(3*d*cos(f*x + e) - 3*I*d*sin(f*x + e) - 2*I*c)/d) + (sqrt(2)*(2*c^2 + 3*c*d - 3*d^2)*cos(f*x + e) + sqr
t(2)*(2*c^2 + 3*c*d - 3*d^2)*sin(f*x + e) + sqrt(2)*(2*c^2 + 3*c*d - 3*d^2))*sqrt(-I*d)*weierstrassPInverse(-4
/3*(4*c^2 - 3*d^2)/d^2, -8/27*(-8*I*c^3 + 9*I*c*d^2)/d^3, 1/3*(3*d*cos(f*x + e) + 3*I*d*sin(f*x + e) + 2*I*c)/
d) - 3*(sqrt(2)*(-I*c*d + 3*I*d^2)*cos(f*x + e) + sqrt(2)*(-I*c*d + 3*I*d^2)*sin(f*x + e) + sqrt(2)*(-I*c*d +
3*I*d^2))*sqrt(I*d)*weierstrassZeta(-4/3*(4*c^2 - 3*d^2)/d^2, -8/27*(8*I*c^3 - 9*I*c*d^2)/d^3, weierstrassPInv
erse(-4/3*(4*c^2 - 3*d^2)/d^2, -8/27*(8*I*c^3 - 9*I*c*d^2)/d^3, 1/3*(3*d*cos(f*x + e) - 3*I*d*sin(f*x + e) - 2
*I*c)/d)) - 3*(sqrt(2)*(I*c*d - 3*I*d^2)*cos(f*x + e) + sqrt(2)*(I*c*d - 3*I*d^2)*sin(f*x + e) + sqrt(2)*(I*c*
d - 3*I*d^2))*sqrt(-I*d)*weierstrassZeta(-4/3*(4*c^2 - 3*d^2)/d^2, -8/27*(-8*I*c^3 + 9*I*c*d^2)/d^3, weierstra
ssPInverse(-4/3*(4*c^2 - 3*d^2)/d^2, -8/27*(-8*I*c^3 + 9*I*c*d^2)/d^3, 1/3*(3*d*cos(f*x + e) + 3*I*d*sin(f*x +
 e) + 2*I*c)/d)) - 6*(c*d - d^2 + (c*d - d^2)*cos(f*x + e) - (c*d - d^2)*sin(f*x + e))*sqrt(d*sin(f*x + e) + c
))/(a*d*f*cos(f*x + e) + a*d*f*sin(f*x + e) + a*d*f)

Sympy [F]

\[ \int \frac {(c+d \sin (e+f x))^{3/2}}{3+3 \sin (e+f x)} \, dx=\frac {\int \frac {c \sqrt {c + d \sin {\left (e + f x \right )}}}{\sin {\left (e + f x \right )} + 1}\, dx + \int \frac {d \sqrt {c + d \sin {\left (e + f x \right )}} \sin {\left (e + f x \right )}}{\sin {\left (e + f x \right )} + 1}\, dx}{a} \]

[In]

integrate((c+d*sin(f*x+e))**(3/2)/(a+a*sin(f*x+e)),x)

[Out]

(Integral(c*sqrt(c + d*sin(e + f*x))/(sin(e + f*x) + 1), x) + Integral(d*sqrt(c + d*sin(e + f*x))*sin(e + f*x)
/(sin(e + f*x) + 1), x))/a

Maxima [F]

\[ \int \frac {(c+d \sin (e+f x))^{3/2}}{3+3 \sin (e+f x)} \, dx=\int { \frac {{\left (d \sin \left (f x + e\right ) + c\right )}^{\frac {3}{2}}}{a \sin \left (f x + e\right ) + a} \,d x } \]

[In]

integrate((c+d*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e)),x, algorithm="maxima")

[Out]

integrate((d*sin(f*x + e) + c)^(3/2)/(a*sin(f*x + e) + a), x)

Giac [F]

\[ \int \frac {(c+d \sin (e+f x))^{3/2}}{3+3 \sin (e+f x)} \, dx=\int { \frac {{\left (d \sin \left (f x + e\right ) + c\right )}^{\frac {3}{2}}}{a \sin \left (f x + e\right ) + a} \,d x } \]

[In]

integrate((c+d*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e)),x, algorithm="giac")

[Out]

integrate((d*sin(f*x + e) + c)^(3/2)/(a*sin(f*x + e) + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(c+d \sin (e+f x))^{3/2}}{3+3 \sin (e+f x)} \, dx=\int \frac {{\left (c+d\,\sin \left (e+f\,x\right )\right )}^{3/2}}{a+a\,\sin \left (e+f\,x\right )} \,d x \]

[In]

int((c + d*sin(e + f*x))^(3/2)/(a + a*sin(e + f*x)),x)

[Out]

int((c + d*sin(e + f*x))^(3/2)/(a + a*sin(e + f*x)), x)